Підписи до слайдів:
«Осьова симетрія» Виконали учні 11-1 класу Зубова Христина Кардаков Ілля
Осьова симетрія осьова симетрія - тип симетрії, що має два відмінних визначення: Відбивна симетрія. В математиці осьова симетрія - вид руху (дзеркального відображення), при якому безліччю нерухомих точок є пряма, яка називається віссю симетрії. Наприклад, плоска фігура прямокутник в просторі Осесиметрична і має 3 осі симетрії (дві - в площині фігури), якщо це не квадрат. Обертальна симетрія. У природничих науках під осьової симетрією розуміють обертальну симетрію (інші терміни - радіальна, осьова, променева симетрії) щодо поворотів навколо прямої. При цьому тіло (фігуру, завдання, організм) називають осесиметричними. якщо вони переходять в себе при будь-якому повороті навколо цієї прямої. В цьому випадку, прямокутник НЕ буде осесиметричним тілом, але конус буде.
ОСЬОВА СИММЕТРИЯ Перетворення фігури F у фігуру F 1. при якому кожна її точка переходить в точку, симетричну щодо даної прямої, називається перетворенням симетрії відносно прямої а. Пряма а називається віссю симетрії.
Вісь симетрії вісь симетрії - в кристалографії пряма лінія, при повороті навколо якої на певний кут симетрична фігура займе в просторі те ж положення, яке вона займала до повороту, але на місце одних її частин перемістяться ін. Такі ж частини. Найменший кут повороту навколо осі, при якому фігура поєднується сама з собою, називається елементарним кутом повороту осі симетрії
Фігура називається симетричною відносно прямої a. якщо для кожної точки фігури симетрична їй точка відносно прямої а також належить цій фігурі.
Фігури, що володіють однією віссю симетрії Кут Рівнобедрений трикутник рівнобедрений трапеції
Фігури, що володіють двома осями симетрії Ромб Прямокутник
Фігури, що мають більше двох осей симетрії Рівносторонній трикутник Коло Квадрат
Симетрія в природі
Симетрія в природі