Закон виключеного третього не є законом, який визнається всіма
логіками як універсального закону логіки. Цей закон застосовується там, де пізнання має справу з жорстко ситуацією: «або - або», «істина - брехня». Там же, де зустрічається невизначеність (наприклад, в міркуваннях про майбутнє), закон виключеного третього часто не може бути застосований. Розглянемо наступний вислів: Ця пропозиція помилково. Воно не може бути істинним, тому що в ньому стверджується, що воно помилкове. Але воно не може бути і помилковим, тому що тоді воно було б неправдою. Це висловлювання неправдиве і не помилково, а тому порушується закон виключення третього. Парадокс (з грец. Paradoxos - несподіваний, дивний) в цьому прикладі виникає через те, що пропозиція посилається саме на себе. Іншим відомим парадоксом є завдання про перукаря: В одному місті перукар стриже волосся всім жителям, крім тих, хто стриже себе сам. Хто стриже волосся перукаря? У логіці через її формальності немає можливості отримати форму такого посилається самого на себе висловлювання. Таким чином, за допомогою логіки можна виразити всі можливі думки і доводи.
Закон подвійного заперечення:
Якщо заперечувати двічі деякий вислів, то в результаті виходить оригінал висловлювання.
Основні закони алгебри висловлювань:
Властивості констант:
1 = 0 а 0 = 0 а 1 = a
0 = 1 А v 0 = А А v 1 = 1
Заперечення брехні є істина.
Заперечення істини є брехня.